
P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 1 of 16

IbDR AES Cipher / Decipher Package
for the

ATMEL ATmega MCU Family

Prof. Dr. Norbert Reifschneider

2011 / 2012

Key features:

 Highly optimized for low memory requirements and fast execution
time, exclusively written in assembly language and targeted to maxi-
mum usage of MCU registers

 Configurable in wide range: For maximum processing speed, for low
memory occupancy, for usage of EEPROM memory for constant stor-
age

 Test environment and test patterns taken from AES FIPS PUB 197 in-
cluded for verification after changes of the code

 Assembler Code available for easy implementation and modification

This document contains proprietary / confidential information and must not be dis-
closed without the written permission of the author.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 2 of 16

Content
Content ... 2
1 Preface ... 3
2 Some details about AES .. 4
3 Encrypting and Decrypting ... 5
4 The AES routines .. 6

4.1 AES_ExpandKey .. 6
4.2 AES_Cipher .. 7
4.3 AES_InvCipher ... 7
4.4 AES_Init ... 8

5 Configuration of the package .. 8
5.1 The Configuration Modes in Detail .. 9

5.1.1 Standard Configuration Mode .. 10
5.1.2 Compact Code .. 10
5.1.3 Standard Mode, Calculate Galois ... 11
5.1.4 Compact Code, Calculate Galois ... 11
5.1.5 Standard Mode, AES Tables in EEPROM ... 12
5.1.6 Compact Code, AES Tables in EEPROM ... 13
5.1.7 Standard Mode, AES Tables in EEPROM, Calculate Galois 13
5.1.8 Compact Code, AES Tables in EEPROM, Calculate Galois 14

6 Quickstart Instructions .. 15
6.1 Only implementing the package ... 15
6.2 Running the package stand alone .. 16
6.3 Modifying the package and testing it .. 16

6.3.1 AES_TEST_MODE ... 16
6.3.2 AES_TESTExpandKey_MODE .. 16

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 3 of 16

1 Preface
The IbDR AES Package for the ATMEL ATmega MCU Family is a package of advanced, high-
ly optimized software routines that implement the standard AES cryptographic algorithm for
most of the ATMEL ATmega microcontrollers (not all of them, since some minimum memory
requirements must be met).

The software is written in assembly language exclusively and can be easily configured via pre-
processor constants to achieve goals like low memory requirements or fast execution times.

In particular when using the standard modes of configuration, fast execution times are achieved
by excessively using MCU registers (in fact, most time all of the 32 registers are used in paral-
lel) and straight-forward programming strategies. The main subroutines “AES_Cipher” and
“AES_InvCipher” for example hold the entire AES State within the MCU registers r0 to r15
without ever storing them out or reloading them from RAM during processing all of the AES
Rounds.

The package also includes test patterns from document AES FIPS PUB 197. The test mode can
easily be activated by setting a preprocessor constant. This way the software may be tested even
if changes were made to it for any reasons.

To include the package into a project, only 3 .asm files and 2 .inc files have to be added to the
project. These files will be discussed in detail later in this document. The files are:

Name Content

AES.asm Assembler source code for all subroutines

AES_Tables.asm Constant Tables for the AES algorithm: SBox, InvSBox, Rcon- and
Galois Values. Usually the constants go to the flash memory, in some
configurations the are calculated during initialization of the package
or put to the EEPROM

AES_Modules.asm Experimental and stand-alone-test environment for the software, al-
lows running and testing all subroutines in “AES.asm” without other
projects. Not needed in final project

AES_Defines.inc Assembler include file, contains preprocessor definitions, in particular
those to configure the package

AES_TestPast.inc Contains test patterns taken from AES FIPS PUB 197. If the package
is configured for test mode, these patterns are compared automatically
with the results of the software. Not needed in final project

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 4 of 16

2 Some details about AES
The Advanced Encryption Standard (AES) is a specification for the encryption of electronic
data. It has been adopted by the U.S. government and is now used worldwide. It supersedes the
previous encryption standard, DES.

The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used
for both encrypting and decrypting the data.

In the USA, AES was announced by National Institute of Standards and Technology (NIST) as
U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001 after a five-year standardization process
in which fifteen competing designs were presented and evaluated before it was selected as the
most suitable. It became effective as a Federal government standard on May 26, 2002 after ap-
proval by the Secretary of Commerce. It is available in many different encryption packages.
AES is the first publicly accessible and open cipher approved by the National Security Agency
(NSA) for top secret information.

Originally called Rijndael, the cipher was developed by two Belgian cryptographers, Joan Dae-
men and Vincent Rijmen, and submitted by them to the AES selection process. The name
Rijndael (Dutch pronunciation: [ˈrɛindaːl]) is a play on the names of the two inventors.

Strictly speaking, AES is the name of the standard, and the algorithm described is a (restricted)
variant of Rijndael. However, in practice the algorithm is also referred to as "AES" (a case of
totum pro parte).

AES can work on key lengths of 128, 192 and 256 bit, thus providing flexibility in security lev-
el. The present package supports all three key lengths.

The AES algorithm first generates a Key Schedule from the key passed to it which is later used
for encrypting and decrypting. The Key Schedule generating algorithm is called “key expan-
sion” and is identical for encrypting and decrypting, resulting in an identical key schedule. The
Key Schedule is 176 bytes long for the 128-bit key, 208 bytes long for the 192-bit-key and 240
bytes long for the 256-bit-key.

After generating the Key Schedule encryption or decryption may be executed for an unlimited
number of data blocks.

Encryption and decryption both work on 16-byte-blocks of data, called the state. A state box
filled with data is passed to the cipher or decipher subroutine along with the Key Schedule gen-
erated previously. After processing, the data (encrypted or decrypted) is to be found in the same
state box that has been passed to the subroutine. Refer to the subsequent chapters for detailed
information about the names and the parameters of each subroutine.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 5 of 16

3 Encrypting and Decrypting
Encrypting and decrypting is done by calling the appropriate subroutines of the package. These
subroutines are explained in detail in chapter 4, in particular how to pass parameters to them and
how to retrieve return values.

If you have chosen one of the modes without computing the Galois field (preprocessor constant
“AES_CALC_GALOIS” not set), simply call the subroutine “AES_KeyExpand” and subse-
quently the subroutines “AES_Cipher” for encryption and “AES_InvCipher” for decryption as
many times as necessary to complete encryption or decryption of all data. Each call to them will
process 16 bytes of data, this is the size of the State. Since both subroutines use the same ex-
panded key, they may be called alternately as far as the same key should be applied to encryp-
tion and decryption.

In all configuration modes, the “AES_Cipher” and “AES_InvCipher” require a pointer to the
RAM memory location where the data to be processed resides. This simply is an array of 16
bytes of data, called the State. The address of this array has to be passed to the subroutines in
MCU Index Register X. After processing, the encrypted or decrypted data is to be found at the
same location.

Via the parameter Nk, which is passed to all 3 subroutines in MCU register r16, the subroutines
are controlled whether to use the AES-128, AES-192 or the AES-256 variant of the algorithm.

The subroutine “AES_KeyExpand” takes the original key (16, 24 or 32 bytes long for the AES-
128, AES-192 or AES-256 algorithm, respectively) as a parameter and performs the so-called
Key Expansion. This Key Expansion yields a Key Schedule with a length of 176, 208 or 240
bytes for the AES-128, AES-192 or AES-256 algorithm, respectively. This Key Schedule is
used by the “AES_Cipher” and the “AES_InvCipher” in the same way.

Note that the RAM address where the generated Key Schedule is to be stored by the
“AES_KeyExpand” subroutine is passed to it as a parameter (in MCU Index Register Y). In
contrary, the subroutines “AES_Cipher” and “AES_InvCipher” do not accept such a parameter
but use the assembler label “AES_Key_w” that must exist anywhere in the .dseg section of the
assembler code and point to the RAM location where the Key Schedule resides. In the standard
version of the package, the size of this memory section is set to 240 bytes for the AES-256 ver-
sion. If the routines are called in AES-128 or AES-192 mode, this memory section remains par-
tially unused. If only the shorter key versions of the AES algorithm should be used, the memory
section may be set to a smaller value. For this purpose, change the appropriate line in the
“AES.asm” file:

;
; AES Key Schedule Field w
; Length of W is 176 for the 128 Bit Key,
; 208 for the 192 Bit Key and 240 for
; the 256 Bit Key. For the shorter Key
; Length, it remains partially unused
;

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 6 of 16

AES_Key_w:
.byte 240 / 208 / 176

If you have chosen one of the modes with computing the Galois field (preprocessor constant
“AES_CALC_GALOIS” is set), it is required to call the subroutine “AES_Init” before using the
“AES_Cipher” or “AES_InvCipher” subroutines. They both need the Galois Field which is lo-
cated in flash or EEPROM memory in the Non-Calculate-Galois modes. In Calculate-Galois
modes, the Galois Field is computed by a small subroutine and stored into RAM prior to use the
“AES_Cipher” or “AES_InvCipher” subroutines when calling the “AES_Init” subroutine. It
does not accept any parameters. The subroutines “AES_Cipher” or “AES_InvCipher” in turn
are configured automatically when being assembled to read the Galois constants from RAM,
EEPROM or flash, whatever is configured by the preprocessor constants.

4 The AES routines
The file “AES.asm” mainly contains the following subroutines (they may call other, small sub-
routines in turn, which are not documented here in detail):

4.1 AES_ExpandKey

This subroutine generates the AES Key Schedule for the subsequent processing of data. The
parameters are:

 MCU Index Register Y (ATmega Register pair r28/r29) must point to a free RAM block
of length 176 Bytes for a 128-bit-key, 208 bytes for a 192-bit-key and 240 bytes for a 256-
bit-key. A label named “AES_Key_w” must exist anywhere within the RAM area (.dseg
area) at this location as the encryption and decryption subroutines take the address for the
Key Schedule from there

 MCU Index Register X must point to the given key (16 bytes for the 128-bit-key, 24 bytes
for the 192-bit-key and 32 bytes for the 256-bit-key

 MCU Register r16 contains the AES-value Nk (refer to document AES FIPS PUB 197 for
additional information) which must be 4 for processing a 128-bit-key, 6 for processing a
192-bit-key and 8 for processing a 256-bit-key

The return values after data processing are:

 The generated Key Schedule is to be found in RAM memory at the location where index
register Y pointed to on calling the subroutine

 MCU Register r16 contains 0 if no errors occurred, 0xFF otherwise. The only error condi-
tion in normal mode is calling the subroutine with a Nk value other than 4, 6 or 8. Never-

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 7 of 16

theless, in test mode an error code is returned if the result calculated from the subroutine
does not match the correct Key Schedule specified in the AES FIPS PUB 197 document.
This can only happen after changes were made to the assembler source code of the subrou-
tine. Note that, when running in test mode, the key passed to the subroutine is not used,
but a standard test key is used instead

4.2 AES_Cipher

This subroutine performs the AES cipher (encryption) algorithm. The parameters are:

 MCU Index Register X (ATmega Register pair r26/r27) must point to the data block
(state) where the data to be encrypted resides

 MCU Register r16 contains the AES-value Nk (refer to document AES FIPS PUB 197 for
additional information) which must be 4 for processing a 128-bit-key, 6 for processing a
192-bit-key and 8 for processing a 256-bit-key

The return values after data processing are:

 The encrypted data is to be found in the same data block (state) where is has been passed
to the subroutine (original RAM data has been overwritten)

 MCU Register r16 contains 0 if no errors occurred, 0xFF otherwise. The only error condi-
tion in normal mode is calling the subroutine with an Nk value other than 4, 6 or 8. Never-
theless, in test mode an error code is returned if the result calculated from the subroutine
does not match the correct value specified in the AES FIPS PUB 197 document. This can
only happen after changes were made to the assembler source code of the subroutine. Note
that, when running in test mode, the data in the state passed to the subroutine is not used,
but a standard test pattern is used instead

4.3 AES_InvCipher

This subroutine performs the AES de-cipher (decryption) algorithm. The parameters are:

 MCU Index Register X (ATmega Register pair r26/r27) must point to the data block
(state) where the data to be decrypted resides

 MCU Register r16 contains the AES-value Nk (refer to document AES FIPS PUB 197 for
additional information) which must be 4 for processing a 128-bit-key, 6 for processing a
192-bit-key and 8 for processing a 256-bit-key

The return values after data processing are:

 The decrypted data is to be found in the same data block (state) where is has been passed
to the subroutine (original RAM data has been overwritten)

 MCU Register r16 contains 0 if no errors occurred, 0xFF otherwise. The only error condi-

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 8 of 16

tion in normal mode is calling the subroutine with an Nk value other than 4, 6 or 8. Never-
theless, in test mode an error code is returned if the result calculated from the subroutine
does not match the correct value specified in the AES FIPS PUB 197 document. This can
only happen after changes were made to the assembler source code of the subroutine. Note
that, when running in test mode, the data in the state passed to the subroutine is not used,
but a standard test pattern is used instead

4.4 AES_Init

This subroutine is only needed when particular configuration settings are used and is only avail-
able then (will not be assembled otherwise). It must be called before any other of the encryp-
tion/decryption subroutines are used.

An example is using the “AES_CALC_GALOIS” preprocessor setting. In this case, the required
Galois field is not stored in flash memory, but the values are computed when executing the
“AES_Init” subroutine and moved to the RAM memory. Refer to the subsequent chapters for
more information.

The “AES_Init” subroutine does not accept any parameters. Nevertheless, if one of the modes
that need it is configured, it uses assembler labels that in turn are only set for these modes. An
example is the label “AES_GaloisField” in the .dseg section of the file “AES.asm”. It reserves
1.536 Bytes of RAM for the Galois constants that normally reside in the flash memory or alter-
natively in the EEPROM memory. Only if the configuration “AES_CALC_GALOIS” is set, the
label (and the appropriate RAM memory section of course) will be available.

5 Configuration of the package
The package may be individually configured by setting preprocessor constants in the file
“AES_Defines.inc”. The preprocessor constants are activated simply by setting them using the
“#define” preprocessor instruction. The standard “AES_Defines.inc” file contains all constants
available but commented out. These constants are:

AES_CALC_GALOIS:

Without this constant, the Galois constants (6 * 256 = 1.536 Bytes) are held in the flash
memory. When this preprocessor constant is set, the software does not store the Galois con-
stants in the flash memory but computes them within the initialization routine when executing
it, thus freeing 1.536 Byte of memory in the flash memory. Nevertheless, now the same amount
of memory in RAM is consumed while executing the package. This RAM block may be used
otherwise after termination of the package

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 9 of 16

AES_TABLES_IN_EEPROM:

When this constant is set, all tables required for the AES algorithm are held in EEPROM
memory, thus freeing 2.096 Bytes of memory in the flash memory. This preprocessor constant
may be used in conjunction with “AES_CALC_GALOIS”. In this case, only 560 Bytes will be
occupied in the flash memory while the Galois constants are calculated while executing the ini-
tialization routine

AES_DBG_TABLES_IN_EEPROM:

This preprocessor constant is only required when testing the package with the AVR Studio 5
Environment. This version lacks of a method to initialize EEPROM contents for simulation.
When this preprocessor constant is set, the tables are automatically stored in the flash memory
and copied to the EEPROM when simulating the test software

AES_COMPACT:

This preprocessor constant chooses the compact code version of the package. The resulting code
is less than half the size of the standard version (not regarding tables stored in flash which re-
quire more space than the executable code), while MCU cycles required for execution are al-
most twice the ones for the standard version

AES_TEST_MODE:

This preprocessor constant assembles the package in the test mode. In this mode, the subrou-
tines are supplied automatically with test patterns taken from AES FIPS PUB 197 while the cal-
culated results are checked against the given results from the same document. This mode is used
preferably with the test environment file “AES_Modules.asm”. After return from any of the Ci-
pher / InvCipher subroutines, the value in register r16 will indicate an error condition if the cal-
culated results do not match the expected results from document AES FIPS PUB 197. In this
case, the program branches to a certain location where a breakpoint can be set in order to rapdi-
ly identify the problem. Note that such problems can only occur if changes were made to the
assembler source code

AES_TESTExpandKey_MODE:

This preprocessor constant explicitly checks the routine “AES_KeyExpand”. When it is set, the
subroutine will check each generated subkey for the final Key Schedule against given true re-
sults in document AES FIPS PUB 197. The subroutine “AES_KeyExpand” will return an error
code in register r16 if any subkey does not match

5.1 The Configuration Modes in Detail
In this chapter, we will discuss the various configuration modes in detail. Subroutines in round
braces are called from the AES subroutines but are not explained in this document. They are
listed in the tables to show their memory occupancy only. Other subroutines are listed to show
memory occupancy and MCU Cycle requirements for execution.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 10 of 16

5.1.1 Standard Configuration Mode

In standard configuration mode, all of the preprocessor constants listed in chapter 5 are removed
or commented out. The following table shows which amount of memory will be used in this
configuration and how many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 704 560 1.536 4.386 5.289 6.192

(AES_AddRoundKey) 2 82

AES_InvCipher 32 16 240 5 948 560 1.536 6.173 7.468 8.763

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 228 560 2.441 2.697 3.229

Total: 32 16 240 5 0 0 1.976 560 1.536

Sums: 0

Standard, (Straight forward, Speed optimized)

293 4.072

MCU Cycles

Module
Flash

Memory Occupancy

RAM

This mode is suitable if sufficient space in the flash memory is available. Its most important
benefit is fast execution time (low amount of MCU Cycles required for data processing).

5.1.2 Compact Code

The Compact Code Mode is activated by setting (#define-ing) the preprocessor constant
“AES_COMPACT”. In this mode the program uses loops whenever possible, computes ad-
dresses instead of using constant values in straight-forward-sequences and so forth.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 270 560 1.536 9.339 11.236 13.133

(AES_AddRoundKey) 2 32

AES_InvCipher 32 16 240 5 366 560 1.536 11.459 13.822 16.185

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 228 560 2.441 2.697 3.229

Total: 32 16 240 5 0 0 910 560 1.536

Sums: 0

Compact Code (Code Size optimized)

293 3.006

Module

MCU CyclesMemory Occupancy

RAM Flash

This mode is suitable when memory limitations exist. Nevertheless, it requires more MCU Cy-
cles for data processing. Refer to modes “AES_CALC_GALOIS” and
“AES_TABLES_IN_EEPROM” for freeing even more flash memory.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 11 of 16

5.1.3 Standard Mode, Calculate Galois

The “Calculate Galois” mode is activated by setting (#define-ing) the preprocessor constant
“AES_CALC_GALOIS”.

In this mode, the Galois constants are not held in flash memory but are computed once before
AES data processing starts. It frees 1.536 bytes in flash memory, but occupies the same amount
in RAM. This mode requires calling the subroutine “AES_Init” before any AES subroutine is
called subsequently.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 1.536 704 560 4.098 4.937 5.776

(AES_AddRoundKey) 2 82

AES_InvCipher 32 16 240 5 1.536 948 560 5.597 6.764 7.931

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 228 560 2.441 2.697 3.229

AES_Init 2 1.536 8 560 162.882 162.882 162.882

AES_CreateGalois 2 1.536 28 162.871 162.871 162.871

AES_GaloisMul 2 28 90 90 90

Total: 32 16 240 5 1.536 0 2.040 558 0

Sums: 01.829 2.598

Standard, Calculate Galois

Module

MCU Cycles
RAM Flash

Memory Occupancy

This mode is suitable if limitations exist in the flash memory but there is sufficient RAM
memory available. Refer to mode “AES_TABLES_IN_EEPROM” for freeing even more flash
memory.

5.1.4 Compact Code, Calculate Galois

The “Compact Code, Calculate Galois” mode is activated by setting (#define-ing) both the pre-
processor constants “AES_COMPACT” and “AES_CALC_GALOIS”.

This mode combines the Compact Code mode explained in 5.1.2 with the Calculate Galois
mode explained in 5.1.3.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 12 of 16

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 1.536 270 560 9.051 10.884 12.717

(AES_AddRoundKey) 2 32

AES_InvCipher 32 16 240 5 1.536 366 560 10.883 13.118 15.353

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 228 560 2.441 2.697 3.229

AES_Init 2 8 162.882 162.882 162.882

AES_CreateGalois 2 1.536 28 162.871 162.871 162.871

AES_GaloisMul 2 28 90 90 90

Total: 32 16 240 5 1.536 0 974 560 0

Sums: 01.829 1.534

Compact Code, Calculate Galois

Memory Occupancy

RAM Flash
Module

MCU Cycles

This mode is suitable if flash memory limitations exist but there is sufficient RAM available.
Note that execution of the “AES_Init” subroutine is mandatory before calling any AES subrou-
tines and that more MCU Cycles are required for data processing.

5.1.5 Standard Mode, AES Tables in EEPROM

The “AES Tables in EEPROM” mode is activated by setting (#define-ing) the preprocessor con-
stant “AES_TABLES_IN_EEPROM”.

In this mode, all AES tables (SBox, InvSBox, Rcon, Galois constants) are stored in EEPROM
instead of the flash memory, freeing 2.096 bytes of flash memory. Since this amount of data
will be stored now in EEPROM, at least ATmega640 or equivalent is required.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 2.096 736 12.162 14.729 17.296

(AES_AddRoundKey) 2 82

AES_InvCipher 32 16 240 5 2.096 1.012 18.989 23.068 27.147

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 2.096 260 4.300 3.913 4.725

AES_ReadEEPR 2 2.096 14

Total: 32 16 240 5 0 2.096 2.118 0 0

Sums: 2.096293 2.118

Standard, AES Tables in EEPROM

Memory Occupancy

RAM Flash
Module

MCU Cycles

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 13 of 16

This mode is suitable in situations where sufficient EEPROM memory is available while flash
memory is low. Note that this mode requires much more MCU cycles since each table data must
be read from EEPROM while processing data. If there is not sufficient EEPROM memory
available or data processing is too slow, this mode may be combined with
“AES_CALC_GALOIS”.

5.1.6 Compact Code, AES Tables in EEPROM

The “Compact Code, AES Tables in EEPROM” mode is activated by setting (#define-ing) both
the preprocessor constants “AES_COMPACT” and “AES_TABLES_IN_EEPROM”.

This mode is similar to the “Standard Mode, AES Tables in EEPROM” (section 5.1.5) but here
the Compact Code version (section 5.1.2) of the assembler code is used.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 2.096 286 17.243 20.836 24.429

(AES_AddRoundKey) 2 32

AES_InvCipher 32 16 240 5 2.096 398 24.547 29.758 34.969

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 2.096 260 4.300 3.913 4.725

AES_ReadEEPR 2 14

Total: 32 16 240 5 0 2.096 1.004 0 0

Sums: 2.096

Compact Code, AES Tables in EEPROM

293 1.004

Memory Occupancy

RAM Flash
Module

MCU Cycles

This mode is suitable when flash memory is very low and slow execution times are acceptable.
It requires even more MCU cycles than the “Standard Mode, AES Tables in EEPROM” mode
since now each table data must be read from EEPROM and additionally the Compact Code
mode requires more cycles than the standard mode.

5.1.7 Standard Mode, AES Tables in EEPROM, Calculate Galois

The “Standard Mode, AES Tables in EEPROM, Calculate Galois” mode is activated by setting
(#define-ing) both the preprocessor constants “AES_TABLES_IN_EEPROM” and
“AES_CALC_GALOIS”.

This mode is similar to the “Standard Mode, AES Tables in EEPROM” (section 5.1.5) but here
the Calculate Galois mode (section 5.1.3) of the assembler code is used in addition.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 14 of 16

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 1.536 560 736 6.978 8.393 9.808

(AES_AddRoundKey) 2 82 61 61 61

AES_InvCipher 32 16 240 5 1.536 560 994 8.477 10.220 11.963

(AES_AddInvRoundKey) 2 14 76 76 76

AES_KeyExpand 32 16 240 2 560 260 3.913 3.913 4.725

AES_ReadEEPR 2 14

AES_Init 2 24 43.018 43.018 43.018

Total: 32 16 240 5 1.536 560 2.124 0 0

Sums: 560

Standard, AES Tables in EEPROM, Calculate Galois

1.829 2.124

Memory Occupancy

RAM Flash
Module

MCU Cycles

In this mode, only the SBox and InvSBox constants are held in EEPROM (560 bytes), while the
Galois constants are computed once when executing the “AES_Init” subroutine and stored in
the RAM memory. This must be done before calling any of the AES subroutines. Note that the
Galois constants (1.536 bytes) now are held in the RAM memory and thus this amount of stor-
age capacity is required there additionally.

Note that this configuration requires far less MCU cycles than the full-EEPROM configuration
described in section 5.1.5. The Galois constants need to be accessed more frequently than the
“SBox”/”InvSBox” constants and thus moving them to the RAM memory has much more im-
pact on the required MCU cycles than for example moving the “SBox”/”InvSBox” constants
there.

5.1.8 Compact Code, AES Tables in EEPROM, Calculate Galois

The “Compact Code, AES Tables in EEPROM, Calculate” mode is activated by setting (#de-
fine-ing) all the preprocessor constants “AES_COMPACT”, “AES_TABLES_IN_EEPROM”
and “AES_CALC_GALOIS”.

This mode is similar to “Standard Mode, AES Tables in EEPROM, Calculate Galois” but here
the Compact Code configuration is used additionally.

The following table shows which amount of memory will be used in this configuration and how
many MCU cycles are necessary for data processing:

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 15 of 16

Configuration:

EEPROM

Key State Expanded

Key

Temp

Storage

Galois Program Tables Galois AES‐128 AES‐192 AES‐256

AES_Cipher 32 16 240 5 1.536 560 270 11.771 14.148 16.525

(AES_AddRoundKey) 2 32

AES_InvCipher 32 16 240 5 1.536 560 366 13.603 16.382 19.161

(AES_AddInvRoundKey) 2 14

AES_KeyExpand 32 16 240 2 560 260 3.961 3.913 4.725

AES_ReadEEPR 2 14

AES_CreateGalois 2 1.536 22

AES_Init 2 24 43.018 43.018 43.018

Total: 32 16 240 5 1.536 560 1.002 0 0

Sums: 5601.829 1.002

Compact Code, AES Tables in EEPROM, Calculate Galois

Memory Occupancy

RAM Flash
Module

MCU Cycles

This mode requires more MCU cycles for data processing as “Standard Mode, AES Tables in
EEPROM, Calculate Galois”, but less capacity in the flash memory for the compact code.

6 Quickstart Instructions
In this chapter, you will learn to set up the package as quickly as possible.

First, decide whether you only want to implement the functional parts of the package or if you
want to test it stand alone including testing it or even want to make modifications to it. Of
course, you can simply copy all files into your project directory and only add the ones you need
for your project.

6.1 Only implementing the package

If you only want to implement the package, copy the files “AES.asm”, “AES_Tables.asm” and
“AES_Defines.inc” to your project directory and include them into the project.

Include the file “AES_Defines.inc” into any of your project files in a way that the assembler
reads it before the “.asm” files are read.

In the first lines of the “AES.asm” file, the RAM memory allocations are set (.dseg section).
Check if any of the assembler directives there conflict with those of your current project. Nor-
mally, this should not happen.

P r o f . D r . N o r b e r t R e i f s c h n e i d e r

Kernerstraße 7 ~ 74226 Nordheim
Telefon: 0171 / 36 57 275 ~ E-Mail: nreifschneider@t-online.de

Documentation AES Package for the ATMEL ATmega MCU Family, 2011/ 2012 16 of 16

6.2 Running the package stand alone

If you want to run the package stand alone, for example to get an idea how it works, copy addi-
tionally the file “AES_Moduls.adm” into your project directory and make it the top module of
the project. The project should assemble without errors and should be ready to debug.

6.3 Modifying the package and testing it

If you want to check the results of the AES subroutines or even modify the assembler code the
“AES_TestPat.inc” file should be copied into the project directory und included into the (test-)
project. This file contains test input stimuli to the AES subroutines and known results both tak-
en from the AES FIPS PUB 197 document.

You can now set the preprocessor constants “AES_TEST_MODE” or “AES_TEST-
ExpandKey_MODE”.

6.3.1 AES_TEST_MODE

If the preprocessor constant “AES_TEST_MODE” is set, all regular input to the subroutines is
ignored. As usual, you have to call the subroutines “AES_Cipher” or “AES_InvCipher”. Instead
of processing the State data passed to it, a test pattern is loaded from the “AES_TestPat.inc” file
within the subroutines into the State. There are different test patterns for AES-128, AES-192
and AES-256. When finished, the result is compared with a known result which is also loaded
from the “AES_TestPat.inc” file. If the computed result does not match the correct value, the
subroutines return the error code 0xFF in MCU register r16, otherwise 0 to denote the error-free
case.

Note: There is only one situation where the subroutines “AES_KeyExpand”, “AES_Cipher”
and “AES_InvCipher” return an error code. This is only true if a Nk value other than 4, 6 or 8 is
passed to them in MCU register r16 to control the modes AES-128, AES-192 or AES-256, re-
spectively.

6.3.2 AES_TESTExpandKey_MODE

This test mode has been designed to check the correct computing of the Key Schedule by the
subroutine “AES_KeyExpand”. As with the “AES_TEST_MODE” test mode, the original key
passed to the subroutine “AES_KeyExpand” will not be used. Instead, test keys will be read
from the file “AES_TestPat.inc” and processed. Again, there are different test keys for AES-
128, AES-192 and AES-256. When processing is done, the generated Key Schedule is com-
pared with the known result taken from the file “AES_TestPat.inc”.

